
MATH 280 Multivariate Calculus Fall 2011

Curl of a vector field

Circulation

Given a vector field ~F and an oriented closed loop C in space, we can think of
the line integral

∮
C
~F · d~r as a circulation. In this interpretation, we think of ~F as the

velocity field of a fluid flow and think about the curve C as a rigid wire in this flow.
Now think about pushing a bead that is strung on the wire. The fluid flow may
help or hinder as we push the bead around the entire loop. The line integral sums
up the tangential component of the velocity multiplied by displacement along the
curve. At a point where the tangential component of the velocity is in the same
direction as the displacement, the contribution to the line integral is positive. This
corresponds to the fluid flow helping us in pushing the bead. At a point where the
tangential component of the velocity is in the opposite direction to the displace-
ment, the contribution to the line integral is negative. This corresponds to the fluid
flow hindering us in pushing the bead. The line integral gives the net help along
the entire curve. Thus, circulation is a measure of how much the flow helps if we
push a bead around the wire in the direction specified by the orientation. If the
circulation is positive, the fluid flow is a net help. If the circulation is negative, the
fluid flow is a net hindrance.

Curl as circulation density

Start with a vector field ~F and focus on a point P in the domain of the vector
field. Imagine a small, flat region that contains P . (You can think of a rectangle or
disk if it helps to be specific about the shape.) We will use ∆D to denote this planar
region. Here ∆ doesn’t mean “a small change in” but serves to remind us that the
region is small. Let ∆~A be the area vector for ∆D. Let ∆C be the closed curve that
is the edge of this region. Orient the curve ∆C so that the thumb of your right hand
points in the direction of ∆~A when your fingers curl around in the direction of ∆C
as shown in Figure 1.
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Figure 1. The edge ∆C of a small planar region.



Both the circulation
∮

∆C
~F · d~r and the area ∆A will go to zero as we shrink the

curve ∆C down to the point P . However, the limit of the ratio∮
∆C

~F · d~r

∆A

might exist. If so, this limit is the circulation density. That is, the limit of the ratio is
the circulation per unit area. We define the curl of the vector field ~F in terms of this
circulation density. The curl of ~F is itself a vector field. The following definition
gives the n̂-component of the curl of ~F as a circulation density.

The n̂-component of the curl of ~F at P is defined as the circulation density at a
point P for a loop with ∆~A = ∆A n̂. That is,

(curl~F) · n̂ = lim
“∆C→P ′′

∮
∆C

~F · d~r

∆A
(1)

In a fluid flow interpretation, we can think of circulation density as telling us
about infinitesimal vortices or “whirlpools” in the fluid flow. One way to con-
ceptualize this is to think of a small paddlewheel anchored at a point in the fluid
flow. The paddlewheel has an orientation given by the direction of the central axis
which we will label p̂. The blades of the paddlewheel are perpendicular to the cen-
tral axis. Having nonzero circulation around an infinitesimal loop corresponds to
an infinitesimal vortex in the fluid flow which will cause the paddlewheel to rotate
about its axis. The component of curl~F in the direction of p̂ is proportional to the
rotation rate of the paddlewheel. Positive rotation is in the counterclockwise direc-
tion when looking straight down the axis of the paddlewheel. This is equivalent to
saying the positive rotation is the direction in which the fingers of your right hand
curl if you orient your thumb in the direction p̂.
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Figure 2. A paddlewheel with orientation p̂
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Example 1
Compute the k̂-component of the curl of the vector field ~F = −y ı̂ + x ̂ + 0 k̂ at the origin
(0, 0, 0).

Since we want the k̂-component of the curl, we will choose a closed loop in the
xy-plane so ∆~A is in the k̂ direction. This vector field points tangent to any circle
centered on the z-axis so a convenient choice of ∆C is a circle of radius R oriented
with area vector pointing in the k̂ direction. The area enclosed by the circle is
∆A = πR2. The circulation for this vector field around the circle of radius R is
easy to compute as∮

circle
~F · d~r = ‖~F‖(circumference of the circle = R(2πR) = 2πR2.

So, we can form the ratio ∮
∆C

~F · d~r

∆A
=

2πR2

πR2 = 2.

We thus have

(curl~F) · k̂ = lim
“∆C→P ′′

∮
∆C

~F · d~r

∆A
= lim

R→0
2 = 2.

So, the circulation density for the orientation k̂ for ~F = −y ı̂ + x ̂ + 0 k̂ at the origin
is positive. In a fluid flow interpretation, we can think of this as saying a paddle-
wheel at (0, 0, 0) with orientation p̂ = k̂ is rotated in the positive direction by the
flow of the fluid.

An expression for curl in cartesian coordinates

From the definition of curl in terms of circulation density, we learn what curl
tells us about the vector field. However, computing the curl from this definition
is difficult. We’ll next look at getting an expression for the curl in terms of partial
derivatives with respect to cartesian coordinates.

Let the vector field ~F be given in cartesian coordinates by

~F(x, y, z) = P(x, y, z)ı̂ + Q(x, y, z) ̂ + R(x, y, z)k̂.

The curl of ~F is itself a vector field so we are looking for an expression of the form

curl~F = (ı̂-component) ı̂ + ( ̂-component) ̂ + (k̂-component) k̂.

We’ll look at the k̂-component in detail and leave the others as exercises. Let ∆D
be a small rectangle parallel to the xy-plane with ∆~A = ∆Ak̂. Then ∆C is oriented
counter-clockwise as viewed from above. (See Figure 3.) Let P be one corner of
this rectangle. Let ∆x and ∆y be the side lengths parallel to the x-axis and y-axis
respectively. The area of the rectangle is ∆A = ∆x ∆y.
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Figure 2. The small rectangular loop ∆C shown in perspective (left) and
from above (right).

Now let’s think about the circulation for this rectangle as given by the line in-
tegral

∮
∆C

~F · d~r. Since we will be eventually taking a limit as the rectangle shrinks
to the point P , we can approximate this line integral with just four terms, one for
each side of the rectangle. Let ∆~r1, ∆~r2, ∆~r3, and ∆~r4 be the displacement vectors
along the four sides as shown in Figure 3. For each side, we can choose where to
evaluate the vector field ~F. We will use the corners P , P1, and P2 shown in Figure
3. Specifically, we use∮

∆C

~F · d~r ≈ ~F(P) · ∆~r1 + ~F(P1) · ∆~r2 + ~F(P2) · ∆~r3 + ~F(P) · ∆~r4. (2)

Now let’s introduce coordinates and components for the vectors in Equation (2).
The vector field ~F has components ~F = P ı̂ + Q ̂ + R k̂. We choose coordinates
with P(x, y, z). Since the side lengths are ∆x and ∆y, this gives us coordinates
P1(x + ∆x, y, z) and P2(x, y + ∆y, z). From the geometry, we can see that ∆~r1 =
∆x ı̂. Thus

~F(P) · ∆~r1 =
(

P(x, y, z) ı̂ + Q(x, y, z) ̂ + R(x, y, z) k̂
)
·
(
∆x ı̂

)
= P(x, y, z)∆x.

The other three terms are similar:

∆~r2 = ∆y ̂ so ~F(P1) · ∆~r2 = Q(x, y + ∆x, z)∆y

∆~r3 = −∆x ı̂ so ~F(P2) · ∆~r3 = −P(x, y + ∆y, z)∆x

∆~r4 = −∆y ̂ so ~F(P) · ∆~r4 = −Q(x, y, z)∆y

Stop here and make sure you understand how to get these expressions including
the negative signs in the last two of these.
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Now substitute into Equation (2) to get∮
∆C

~F · d~r ≈ P(x, y, z)∆x + Q(x, y + ∆x, z)∆y− P(x, y + ∆y, z)∆x−Q(x, y, z)∆y

=
[
P(x, y, z)− P(x, y + ∆y, z)

]
∆x +

[
Q(x, y + ∆x, z)−Q(x, y, z)

]
∆y

=
[
Q(x, y + ∆x, z)−Q(x, y, z)

]
∆y−

[
P(x, y + ∆y, z)− P(x, y, z)

]
∆x

Thus, the ratio of circulation to area enclosed is∮
∆C

~F · d~r

∆A
=

[
Q(x, y + ∆x, z)−Q(x, y, z)

]
∆y−

[
P(x, y + ∆y, z)− P(x, y, z)

]
∆x

∆x ∆y

=
Q(x, y + ∆x, z)−Q(x, y, z)

∆x
− P(x, y + ∆y, z)− P(x, y, z)

∆y
. (3)

Now consider the limit as ∆C shrinks to the point P . We achieve this by taking
∆x → 0 and ∆y → 0. Note each of the two terms on the right side of Equation (3)
will give a partial derivative in this limit. We thus have

k̂-component of curl~F at P = lim
∆x,∆y→0

∮
∆C

~F · d~r

∆A
=

∂Q
∂x
− ∂P

∂y
(4)

for an “infinitesimal loop” parallel to the xy-plane. Another way to specify this
orientation is to say the area vector for this “infinitesimal loop” is d~A = dA k̂.

In the problems, you are asked to compute the ı̂- and ̂-components of the curl
of ~F. The answers are

ı̂-component of curl~F at P =
∂R
∂y
− ∂Q

∂z
(5)

̂-component of curl~F at P =
∂P
∂z
− ∂R

∂x
. (6)

Putting these together, we have the following result.

In cartesian coordinates, the curl of

~F = P(x, y, z)ı̂ + Q(x, y, z) ̂ + R(x, y, z)k̂

is given by

curl~F =
(∂R

∂y
− ∂Q

∂z

)
ı̂ +
(∂P

∂z
− ∂R

∂x

)
̂ +
(∂Q

∂x
− ∂P

∂y

)
k̂. (7)
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Example 2
Compute the curl of ~F = −y ı̂ + x ̂ + 0 k̂.

We can read off the components as P(x, y, z) = −y, Q(x, y, z) = x, and R(x, y, z) =
0. So, we can compute the curl components as

∂R
∂y
− ∂Q

∂z
=

∂

∂y
[0]− ∂

∂z
[x] = 0− 0 = 0

∂P
∂z
− ∂R

∂x
=

∂

∂z
[−y]− ∂

∂z
[0] = 0− 0 = 0

∂Q
∂x
− ∂P

∂y
=

∂

∂x
[x]− ∂

∂y
[−y] = 1− (−1) = 2.

Thus, the curl of this vector field is

curl~F(x, y, z) = 0 ı̂ + 0 ̂ + 2 k̂

for all points (x, y, z). In Example 1, we computed the value of 2 for the k̂ compo-
nent of this vector field at (0, 0, 0). Now we see that this vector field has a constant
curl with zero ı̂ and ̂ components and 2 for the k̂ component. In a fluid flow inter-
pretation, a paddlewheel placed at any point oriented with p̂ as ı̂ or ̂ will not be
rotated by the flow while a paddlewheel at any point oriented with p̂ = k̂ will be
rotated in the positive direction.

The operator point of view

We have defined the “del” operator as, in cartesian coordinates,

~∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z
.

We have seen that the divergence of a vector field is given by dotting ~∇ with ~F.
For fun, let’s see what happens if we cross ~∇ with ~F = P ı̂ + Q ̂ + R k̂:

~∇× ~F =
(

ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

)
×
(

P ı̂ + Q ̂ + R k̂
)

=
(∂R

∂y
− ∂Q

∂z

)
ı̂−
(∂R

∂x
− ∂P

∂z

)
̂ +
(∂Q

∂x
− ∂P

∂y

)
k̂

=
(∂R

∂y
− ∂Q

∂z

)
ı̂ +
(∂P

∂z
− ∂R

∂x

)
̂ +
(∂Q

∂x
− ∂P

∂y

)
k̂

= curl~F.

So, we have a convenient way of remembering how to compute the curl of a vector
field. We need only cross ~∇ with ~F.
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Problems: curl of a vector field

1. Compute the ̂ and k̂ components of the curl in cartesian coordinates by suit-
ably modifying the plan carried out for the ı̂ component.

For each of the following vector fields, compute the curl. Evaluate the curl at
a few points and give an interpretation for each value.

2. ~F = x ı̂ + y ̂ + 0 k̂

3. ~F = x ı̂ + y ̂ + z k̂

4. ~F = z sin(xy) ı̂ + (x + y) ̂ + zex k̂

5. ~F =
−y ı̂ + x ̂√

x2 + y2

6. ~F =
−y ı̂ + x ̂

x2 + y2

7. Consider a planar vector field ~F(x, y) = P(x, y) ı̂ + Q(x, y) ̂. We can think
of this as a vector field in space by adding 0 k̂ to get ~F(x, y) = P(x, y) ı̂ +
Q(x, y) ̂ + 0 k̂. Compute the curl of a vector field with this form.

8. Let ~F = P ı̂ + Q ̂ + R k̂ be a vector field with the component functions P, Q,
and R having continuous second partial derivatives. Show that
~∇ · (~∇× ~F) = 0.

9. Let f be a function with continuous second partial derivatives. Show that
~∇× ~∇ f =~0.
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